1,054 research outputs found

    Detecting Weakly Simple Polygons

    Full text link
    A closed curve in the plane is weakly simple if it is the limit (in the Fr\'echet metric) of a sequence of simple closed curves. We describe an algorithm to determine whether a closed walk of length n in a simple plane graph is weakly simple in O(n log n) time, improving an earlier O(n^3)-time algorithm of Cortese et al. [Discrete Math. 2009]. As an immediate corollary, we obtain the first efficient algorithm to determine whether an arbitrary n-vertex polygon is weakly simple; our algorithm runs in O(n^2 log n) time. We also describe algorithms that detect weak simplicity in O(n log n) time for two interesting classes of polygons. Finally, we discuss subtle errors in several previously published definitions of weak simplicity.Comment: 25 pages and 13 figures, submitted to SODA 201

    From Proximity to Utility: A Voronoi Partition of Pareto Optima

    Get PDF
    We present an extension of Voronoi diagrams where when considering which site a client is going to use, in addition to the site distances, other site attributes are also considered (for example, prices or weights). A cell in this diagram is then the locus of all clients that consider the same set of sites to be relevant. In particular, the precise site a client might use from this candidate set depends on parameters that might change between usages, and the candidate set lists all of the relevant sites. The resulting diagram is significantly more expressive than Voronoi diagrams, but naturally has the drawback that its complexity, even in the plane, might be quite high. Nevertheless, we show that if the attributes of the sites are drawn from the same distribution (note that the locations are fixed), then the expected complexity of the candidate diagram is near linear. To this end, we derive several new technical results, which are of independent interest. In particular, we provide a high-probability, asymptotically optimal bound on the number of Pareto optima points in a point set uniformly sampled from the dd-dimensional hypercube. To do so we revisit the classical backward analysis technique, both simplifying and improving relevant results in order to achieve the high-probability bounds

    Untangling Planar Curves

    Get PDF
    Any generic closed curve in the plane can be transformed into a simple closed curve by a finite sequence of local transformations called homotopy moves. We prove that simplifying a planar closed curve with n self-crossings requires Theta(n^{3/2}) homotopy moves in the worst case. Our algorithm improves the best previous upper bound O(n^2), which is already implicit in the classical work of Steinitz; the matching lower bound follows from the construction of closed curves with large defect, a topological invariant of generic closed curves introduced by Aicardi and Arnold. This lower bound also implies that Omega(n^{3/2}) degree-1 reductions, series-parallel reductions, and Delta-Y transformations are required to reduce any planar graph with treewidth Omega(sqrt{n}) to a single edge, matching known upper bounds for rectangular and cylindrical grid graphs. Finally, we prove that Omega(n^2) homotopy moves are required in the worst case to transform one non-contractible closed curve on the torus to another; this lower bound is tight if the curve is homotopic to a simple closed curve

    Tightening curves and graphs on surfaces

    Get PDF
    Any continuous deformation of closed curves on a surface can be decomposed into a finite sequence of local changes on the structure of the curves; we refer to such local operations as homotopy moves. Tightening is the process of deforming given curves into their minimum position; that is, those with minimum number of self-intersections. While such operations and the tightening process has been studied extensively, surprisingly little is known about the quantitative bounds on the number of homotopy moves required to tighten an arbitrary curve. An unexpected connection exists between homotopy moves and a set of local operations on graphs called electrical transformations. Electrical transformations have been used to simplify electrical networks since the 19th century; later they have been used for solving various combinatorial problems on graphs, as well as applications in statistical mechanics, robotics, and quantum mechanics. Steinitz, in his study of 3-dimensional polytopes, looked at the electrical transformations through the lens of medial construction, and implicitly established the connection to homotopy moves; later the same observation has been discovered independently in the context of knots. In this thesis, we study the process of tightening curves on surfaces using homotopy moves and their consequences on electrical transformations from a quantitative perspective. To derive upper and lower bounds we utilize tools like curve invariants, surface theory, combinatorial topology, and hyperbolic geometry. We develop several new tools to construct efficient algorithms on tightening curves and graphs, as well as to present examples where no efficient algorithm exists. We then argue that in order to study electrical transformations, intuitively it is most beneficial to work with monotonic homotopy moves instead, where no new crossings are created throughout the process; ideas and proof techniques that work for monotonic homotopy moves should transfer to those for electrical transformations. We present conjectures and partial evidence supporting the argument

    Computing the Girth of a Planar Graph in Linear Time

    Full text link
    The girth of a graph is the minimum weight of all simple cycles of the graph. We study the problem of determining the girth of an n-node unweighted undirected planar graph. The first non-trivial algorithm for the problem, given by Djidjev, runs in O(n^{5/4} log n) time. Chalermsook, Fakcharoenphol, and Nanongkai reduced the running time to O(n log^2 n). Weimann and Yuster further reduced the running time to O(n log n). In this paper, we solve the problem in O(n) time.Comment: 20 pages, 7 figures, accepted to SIAM Journal on Computin

    Lower Bounds for Electrical Reduction on Surfaces

    Get PDF
    We strengthen the connections between electrical transformations and homotopy from the planar setting - observed and studied since Steinitz - to arbitrary surfaces with punctures. As a result, we improve our earlier lower bound on the number of electrical transformations required to reduce an n-vertex graph on surface in the worst case [SOCG 2016] in two different directions. Our previous Omega(n^{3/2}) lower bound applies only to facial electrical transformations on plane graphs with no terminals. First we provide a stronger Omega(n^2) lower bound when the planar graph has two or more terminals, which follows from a quadratic lower bound on the number of homotopy moves in the annulus. Our second result extends our earlier Omega(n^{3/2}) lower bound to the wider class of planar electrical transformations, which preserve the planarity of the graph but may delete cycles that are not faces of the given embedding. This new lower bound follow from the observation that the defect of the medial graph of a planar graph is the same for all its planar embeddings

    Efficient Algorithms for Geometric Partial Matching

    Get PDF
    Let A and B be two point sets in the plane of sizes r and n respectively (assume r <= n), and let k be a parameter. A matching between A and B is a family of pairs in A x B so that any point of A cup B appears in at most one pair. Given two positive integers p and q, we define the cost of matching M to be c(M) = sum_{(a, b) in M}||a-b||_p^q where ||*||_p is the L_p-norm. The geometric partial matching problem asks to find the minimum-cost size-k matching between A and B. We present efficient algorithms for geometric partial matching problem that work for any powers of L_p-norm matching objective: An exact algorithm that runs in O((n + k^2)polylog n) time, and a (1 + epsilon)-approximation algorithm that runs in O((n + k sqrt{k})polylog n * log epsilon^{-1}) time. Both algorithms are based on the primal-dual flow augmentation scheme; the main improvements involve using dynamic data structures to achieve efficient flow augmentations. With similar techniques, we give an exact algorithm for the planar transportation problem running in O(min{n^2, rn^{3/2}}polylog n) time
    • …
    corecore